Ashish Panigrahi
आशिष पाणिग्राही

A Primer to the No-Cloning Theorem

26-07-2020

Before we dive into the no-cloning theorem, it is important to glance over certain methods and concepts apriori.

Unitary transform:

An operator UU is unitary if

UU=UU=I U U^\dagger = U^\dagger U = I

where UU^\dagger is the complex conjugate (interchange rows & columns and replace ii with i-i) of UU.

Tensor product:

Let there be 2 matrices AA and BB where

A=(a00a01a10a11) A = \begin{pmatrix} a_{00} & a_{01} \\ a_{10} & a_{11} \\ \end{pmatrix} B=(b00b01b10b11) B = \begin{pmatrix} b_{00} & b_{01} \\ b_{10} & b_{11} \\ \end{pmatrix}

The tensor product of AA and BB is represented as ABA \otimes B and is evaluated as

AB=(a00(b00b01b10b11)a01(b00b01b10b11)a10(b00b01b10b11)a11(b00b01b10b11)) A \otimes B = \begin{pmatrix} a_{00} \cdot \begin{pmatrix} b_{00} & b_{01} \\ b_{10} & b_{11} \\ \end{pmatrix} & a_{01} \cdot \begin{pmatrix} b_{00} & b_{01} \\ b_{10} & b_{11} \\ \end{pmatrix} \\ a_{10} \cdot \begin{pmatrix} b_{00} & b_{01} \\ b_{10} & b_{11} \\ \end{pmatrix} & a_{11} \cdot \begin{pmatrix} b_{00} & b_{01} \\ b_{10} & b_{11} \\ \end{pmatrix} \\ \end{pmatrix}

Disclaimer

I have used the term unitary transform and unitary operation interchangeably (since they mean the same thing).

Introduction

Given a quantum state ψ>=α0>+β1>\left| \psi \right> = \alpha \left| 0 \right> + \beta \left| 1 \right> with unknown complex coefficients α\alpha and β\beta, is it possible to replicate the state onto another qubit? In other words, is it possible to go from ψ>\left| \psi \right> to ψ>ψ>\left| \psi \right> \otimes \left| \psi \right>? Let us form a hypothesis.

Hypothesis:

Given an unknown quantum state ψ>\left| \psi \right>, there exists a unitary transform UU such that it replicates the state ψ>\left| \psi \right> to ψ>ψ>\left| \psi \right> \otimes \left| \psi \right>.

From the postulates of quantum mechanics, any transformation of a quantum system must be unitary. Hence, we are trying to look for a unitary operation UU to make the following transform:

Uψ>0>=ψ>ψ> U \left| \psi \right> \otimes \left| 0 \right> = \left| \psi \right> \otimes \left| \psi \right>

Here the inputs are ψ>\left| \psi \right> and an ancilla qubit (in our case 0>\left | 0 \right>).

The no cloning theorem tells us that such a unitary transform does not exist. Let us see how this is true, algebraically. We will do this by disproving the hypothesis. Let us look at the cases when ψ>=0>\left| \psi \right> = \left| 0 \right> and when ψ>=1>\left| \psi \right> = \left| 1 \right>. On applying the operation UU, the 2-qubit state becomes,

0>0>=00>U00> \left| 0 \right> \otimes \left| 0 \right> = \left| 00 \right> \xrightarrow[]{U} \left| 00 \right> 1>0>=10>U11> \left| 1 \right> \otimes \left| 0 \right> = \left| 10 \right> \xrightarrow[]{U} \left| 11 \right>

Now let us apply UU to the original state ψ>(=α0>+β1>)\left| \psi \right> (= \alpha \left| 0 \right> + \beta \left| 1 \right>) based on the above transformations.

(α0>+β1>)0>=α00>+β10>UαU00>+βU10>=α00>+β11> (\alpha \left| 0 \right> + \beta \left| 1 \right>) \otimes \left| 0 \right> = \alpha \left| 00 \right> + \beta \left| 10 \right> \xrightarrow[]{U} \alpha U \left| 00 \right> + \beta U \left| 10 \right> = \alpha \left| 00 \right> + \beta \left| 11 \right>

Based on our original hypothesis, the output is

(α0>+β1>)(α0>+β1>)=α200>+αβ01>+βα10>+β211> (\alpha \left| 0 \right> + \beta \left| 1 \right>) \otimes (\alpha \left| 0 \right> + \beta \left| 1 \right>) = \alpha ^2 \left| 00 \right> + \alpha \beta \left| 01 \right> + \beta \alpha \left| 10 \right> + \beta ^2 \left| 11 \right>

In matrix notation this looks like

(α2αββαβ2)=U(α0β0) \begin{pmatrix} \alpha ^2 \\ \alpha \beta \\ \beta \alpha \\ \beta ^2 \\ \end{pmatrix} = U \begin{pmatrix} \alpha \\ 0 \\ \beta \\ 0 \\ \end{pmatrix}

Now comparing the coefficients of the output states, such a case is only possible if α=1\alpha = 1 or β=1\beta = 1. This disproves the hypothesis, hence proving the no cloning theorem.

References

  1. Quantum Computing lectures by Dr. Umesh Vazirani

  2. Principles of Quantum Mechanics - Shankar

  3. Quantum Computation and quantum information - Nielsen & Chuang